

A.5:2008/2009

Devoir de contrôle N°2

Classes 4èmesc

Durée: 2.h

Exercice N°1: (4 pts)

Choisir la réponse correcte.

1/ La fonction $x \mapsto \tan x - x$ est la primitive qui s'annule en 0 de la fonction

- \square $x \mapsto \tan^2 x$
- \square $x \mapsto \frac{1}{\sin^2 x}$
- \square $x \mapsto \sin^2 x 1$

2/ La fonction $x \mapsto \sin x$ est la primitive qui s'annule en 0 de la fonction

- \square $x \mapsto 1-\cos x$
- \Box $x \mapsto \cos x$
- $x \mapsto \cos x 1$

3/ La primitive sur]-1,+ ∞ [de la fonction : $x \mapsto \frac{1}{(1-x)^3}$, qui s'annule en 0 est

- $\square x \mapsto \frac{1}{2(1-x)^2} + \frac{1}{2}$ $\square x \mapsto \frac{1}{4(1-x)^4} \frac{1}{4}$ $\square x \mapsto \frac{1}{2(1-x)^2} \frac{1}{2}$

4/ La primitive sur $]0,+\infty[$ de la fonction : $x\mapsto \frac{\ln x}{x}$, qui s'annule en 1 est

- \square $x \mapsto \frac{1}{2} (\ln x)^2$
- \square $x \mapsto 2 \ln x$
- \square $x \mapsto 2x \ln x$

Exercice N°2: (6 pts)

L'espace est rapporté à un repère orthonormé direct $(0, \vec{i}, \vec{j}, \vec{k})$ On considère les points A(2,3,-1); B(4,0,2) et C(3,2,1)

1/a) Calculer les composantes du vecteur AB∧AC

- b) Calculer sin(BAC) et cos(BAC)
- c) Donner une équation cartésienne du plan (ABC) noté P

2/ Soit $Q = \{M(x, y, z) \in \xi \text{ tel que } \overrightarrow{AM}.\overrightarrow{AB} + \overrightarrow{BM}.\overrightarrow{AC} = 0\}$

- a) Montrer que Q est un plan dont une équation cartésienne est 3x 4y + 5z = 0
- b) Montrer que P et Q sont sécantes suivant une droite Δ dont on donnera une représentation paramétrique

3/ Soit H le projeté orthogonale du point C sur (AB)

- a) Calculer l'aire du triangle ABC
- b) Déduire la distance CH

Exercice N°3: (5 pts)

Dans l'espace rapporté à un repère orthonormé direct $(0,\vec{i},\vec{j},\vec{k})$ on donne les points A(1,1,-2); B(1,2,-2) et C(0,1,1).

- 1/a) Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$ et déduire que les points A, B et C définissent un plan P
 - b) Déterminer une équation cartésienne de P
- 2/ Soit Q le plan perpendiculaire à (AC) passant par A
 - a) Donner une équation cartésienne de Q
 - b) Montrer que P et Q sont perpendiculaire suivant (AB)
- 3/ Soit S l'ensemble des points M(x, y, z) tels que : $x^2 + y^2 + z^2 2x 2y + 4z + 4 = 0$
 - a) Montrer que S est une sphère dont on déterminera le centre I et le rayon R
 - b) Caractériser S∩P

Exercice N°4: (6 pts)

Soit f la fonction définie par $f(x) = -1 + \sqrt{x^2 + 1}$

- 1/a) Déterminer le domaine de définition de f
 - b) Montrer que f est une fonction paire. Interpréter graphiquement ce résultat
- 2/ Etudier les variations de f sur \square +
- 3/a) Montrer que la droite Δ : y = x 1 est une asymptote à ζ_f au voi sin age de + ∞
 - b) Etudier la position relative de $\zeta_{\rm f}$ et Δ
- 4/ Tracer $\zeta_{\rm f}$ et Δ dans un repère orthonormé (o, \vec{i} , \vec{j})
- 5/ Soit g la restriction de f sur 🗆 +
 - a) Montrer que g admet une fonction réciproque $\,g^{-1}\,d\text{\'e}finie$ sur $\,\Box_{\,\,+}$
 - b) Tracer $\zeta_{g^{-1}}$ courbe représentative de la fonction g^{-1} dans le même repère
 - c) Dresser le tableau de variation de g⁻¹
 - d) Expliciter $g^{-1}(x)$ ainsi que $(g^{-1})'(x)$